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ABSTRACT 
 
The least squares is the most popular algorithm for solving linear as well as nonlinear systems of equations. In 
the paper there are presented the theoretical basis of the Gauss – Newton and the Levenberg – Marquardt 
algorithms for solution estimation with the use of the nonlinear least squares method. The discussed schemes of 
proceeding usually allow the user to improve the quality of the estimated solutions. The analysis of frequency 
data measured on a real structure with the use of the created software realizing the Gauss – Newton algorithm in 
the Matlab environment is presented. The comparison of the analysis results estimated by the use of the proposed 
software and the LSCE algorithm implemented in the VIOMA toolbox is also included.  
 
 
Keywords: modal analysis, nonlinear least squares frequency domain method, Gauss – 
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List of most important symbols and abbreviations used in the paper: 

[], {}: matrix, vector, 

[]T, {}T: transpose of a matrix, transpose of a vector, 

[ ]*, {}*: conjugate matrix, conjugate vector, 

{y}: vector of system response values, 

{e}: vector of error values, 

S: sum of square errors, 

λr: system pole, 

{Ψir}: modal displacement vector (modal vector), 

Lrj: modal participation factor,  

URij: upper residual term,  

LRij: lower residual term, 

SDT: Structural Dynamics Toolbox dedicated for Matlab, 

SCSI: a junction between Siglab analyser and a superior unit (e. g. PC computer), 

VIOMA (Virtual In – Operation Modal Analysis Toolbox): a set of Matlab functions designed 

for classical and in-operation modal analysis created in the Department of Robotics and 

Machine Dynamics of the AGH Technical University (Cracow).    
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1 Introduction 
 

Dynamic properties of mechanical systems can stand for the basis of assessment of 

their technical state, degree of ware and exploitational parameters. Usually the analysis of 

dynamic properties is carried out for the model that represents mechanical structure dynamic 

behaviour. Nowadays it is a standard procedure to model mechanical systems with the use of 

modal models built on the basis of the finite element method or of the data measured on a  

real structure [Uhl T., 1997]. The process of structural modal creation is not only time-

consuming but also the estimated model parameters should be fitted to data measured on a 

modelled structure. The model correctness can be verified by the comparison of frequency 

characteristics measured on a structure with model frequency characteristics obtained by 

synthesis.   

The nonlinear least squares method, which is a subject of this paper, belongs to the 

group of methods that make it possible to identify modal model on the basis of data measured 

on a real structure. 

2 Nonlinear least squares method 
 

The least squares algorithm consists in estimation of the modal model parameters in 

such a way that a sum of square differences between a measured structure response and an 

estimated modal response is the smallest. The usage of square error values allows the analyst 

to emphasis differences between small and significant measurement errors and, in 

consequence, enables him to identify accidental errors and eliminate them from the further 

analysis [Ligęza J., 2002]. Moreover, all the computations are reduced to the simple 

transformations of the matrix algebra. 

The least squares method can be used for solving systems of equations with the 

number of equations greater then the number of unknowns. In case of a system of linear 

equations, the method leads to the direct estimation of parameters. In case of a system of 

nonlinear equations it is necessary to assume the initial values; as a result of each iteration, 

new initial values, better ‘fitted’ to the measured characteristic are obtained. 

The nonlinear least squares method is used in case when some parameters are 

nonlinear. The model is described by the equation [Norton J. P., 1986]: 

(1) [ ] { } { }eUfy += ),(}{ θ      
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where: {y}: vector of measured system response values, {f}: function modeling {y}, 

[U]: matrix containing known coefficients, {θ}: vector of unknown model coefficients, 

{e}: vector of measurement and modelling errors. 

The obtained estimate {
∧

θ } satisfies the so called generalised normal equation in the form of: 

(2) { } [ ] { } [ ] { }( )( ) 0,2 =−−=
∂
∂ θ
θ θ UfyfJS T  

where: { } { }eeS T ⋅= : method error, [ ]fJθ : Jacobian matrix of the function  f with respect to 

{θ}; consecutive derivatives 
j

if
θ∂
∂  of the function  f  with respect to the unknown model 

coefficients {θ}  form consecutive elements (i, j) of the Jacobian matrix. 

Estimation of nonlinear model parameters is additionally complicated by the fact that 

Jacobian [J0f] is a function of {θ}; as a result the generalised normal equation is nonlinear and 

requires iterative solving. Nonlinear equation coefficients are estimated for previously 

estimated linear coefficients.  

2.1 Gauss – Newton algorithm 

 
Nonlinear least squares solving with the use of the Gauss – Newton algorithm consists 

in gradual updating the vector of unknown model coefficients {
∧

θ } in order to meet the 

condition g({
∧

θ }) = 0. In the kth iteration, a vector of coefficients {
∧

θ (k-1)} is substituted by the 

vector {
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θ (k)} such that: 
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where: g({θ}): function dependent on {θ}, [Jθg]: Jacobian matrix of the function  g with 

respect to {θ}. 

On the basis of the normal equation (2) gi({θ}): 
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If the current estimate {
∧

θ (k-1)} gives relatively small error {yl} – fl([U], {θ}) then in the 

equation (5) all the expressions containing second derivatives are neglected and the Jacobian 

is written in the following form: 

(6) [ ] [ ] [ ]fJfJ
ff

gJ T
T

l
N

l

l
θθθ θθ

22
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=
∂
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⋅
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Having assumed notation [ ]fJθ  = [ )1( −kJ ], the equation describing the Gauss –Newton 

method has the form of: 
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where: {y} – f(k-1)([U],{θ}): method error in the (k – 1)th  iteration. 

In the kth iteration the unknown system parameters are estimated on the basis of the values of 

this parameters, Jacobian and the method error from the previous, (k-1)th,  iteration. If the sum 

of square errors increases in the consecutive iterations then the method is not convergent, 

which can result from the incorrect choice of poles initial values.  

2.2 Levenberg – Marquardt algorithm 

 
Taking small steps towards decreasing gradient enables the analyst to speed up 

reduction of the error value S in consecutive iterations from the value {
∧

θ (k-1)} to: 
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where: α: a small number that makes it possible to neglect all the expressions containing the 

second (or higher) derivatives. Unfortunately, in order to determine maximal possible value of  

α, it is necessary to investigate a local shape of the characteristic S({θ}). If  a conservative 

value of α is chosen the progress is slow, which results from the fact that near the optimum 

gradient values are small.  

The idea of the Levenberg – Marquardt algorithm is to find a compromise between 

direction of decreasing gradient and the direction given by the Gauss – Newton algorithm, 

which means that the following condition should be met: 
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where: 
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
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k
k

kd θθ : a step, )1( −kµ : positive value that controls both the magnitude 

and direction of dk.  

In case of choice of a small value )1( −kµ  a step is similar to the step from the Gauss – Newton 

algorithm. If the chosen value )1( −kµ  tends to infinity, the step dk tends toward a vector of 

zeros and a steepest descent direction.  

The value of µ  is updated in each step depending on a progress from the previous step. 

Implementations of the Levenberg – Marquardt algorithm differ from each other in methods 

of µ  updating (e.g. [MathWorks Inc., 2003]) – the maximal progress should take place in 

minimal number of iterations and the software protections in case of appearance of very small 

values of  µ should be written. 

 

3 Nonlinear least squares frequency domain method 

 
The nonlinear least squares frequency domain method belongs to the group of global 

methods for multiple degree of freedom systems. It consists in formulating modal model 

equations and fitting, with the use of the nonlinear least squares method, this model 

parameters to data measured on the real system. The algorithm consists of a few basic steps: 

− choice of a frequency band in which the modal model is going to be identified, 

− choice of poles initial values, 

− model building (formulation of modal model equations), 

− model fitting to the measured data (with the use of the nonlinear least squares method), 

− defining the error between measured and estimated frequency characteristics, 

− minimization of the sum of square errors, 

− iteration repeating as long as the error is bigger than the assumed value. 

For a given frequency band, a frequency response function (FRF) of a single degree of 

freedom system, defined between the point of response measurement i and the point in which 

the excitation is applied j, is approximated by the equation [Heylen W., et al., 1994]: 
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where: { })( ωjH E
ij : measured system frequency response function; Nm: model order; {Ψir}: 

modal vector; Lrj: modal participation factor; λr: system pole; URij, LRij: upper and lower 
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residual terms approximating the contribution of modes lying above and below the 

measurement frequency band respectively.  

The above equation can also be written in a simplified form: 
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where: Rijr – modal residue. 

The right side of the equation (11) is a function of frequency and unknown modal parameters 

of the system of interest: 

(12) { } ( ){ } mijijrjirr
E
ijij NrLRURLjHjG ,,1,,,,,,)( K=Ψ= λωω  

or: 

(13) { } ( ){ } mijijijrr
E
ijij NrLRURRjHjG ,,1,,,,,)( K== λωω  

The overall method square error for a given frequency band is given by the equation: 
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where: fωω ,,0 K : given frequency band. 

Unknown system parameters are estimated as a solution of the following system of equations: 

(15) 
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where: {θ} = [θ1, …, θn]: vector of unknown model parameters. 

 In this paper the iterative Gauss – Newton algorithm is used for solving systems of 

nonlinear equations. This algorithm requires the choice of the unknown system poles initial 

values. Since the user guess of poles initial values is usually too distant from real values and 

results in method divergence, the LSFD method as a practical direct method of model 

identification has turned out to be troublesome and rather ineffective. The poles initial values 

(initial model) should be estimated by the use of either single degree of freedom methods 

(such as a circle fitting [Heylen W., et al., 1994], [Kurowski P., et al., 2001]) or multiple 

degree of freedom methods [Balmès E., 1996]. In such a case, it is worth to take note of the 

fact that stabilizing diagrams determined by the considered method are much more easy to 

interpret than those determined by classical modal analysis methods such as LSCE or ERA. 

Estimated pole lines are straight, do not ‘branch off’, which simplifies the choice of system 
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poles which is nowadays a critical stage of modal analysis. The application of  the LSFD 

method with the use of the Gauss – Newton algorithm to the modal model identification 

proposed by the authors is depicted in the Fig.1.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. The proposed application of  the LSFD method with the use of the Gauss – Newton algorithm 
to the modal model identification 
 

According to the Fig. 1, the proposed software realising the LSFD method with the use 

of the Gauss – Newton algorithm in Matlab is used for making the choice of correct poles 

values from the stabilizing diagrams more obvious for the analyst, which, in turn, leads to the 

quality improvement of the obtained modal models. In the kth method iteration, for poles 

initial values estimated by the use of methods implemented in the Vioma toolbox, values of  

model linear parameters are calculated. For this values the nonlinear parameters – system 

poles - are optimized in such a way that the model frequency response function is better fitted 

to the measured frequency response function than in the previous, (k – 1)th, iteration (S(k-1) > 

S(k)). The poles values estimated in the kth iteration are assumed as poles initial values in the 

(k + 1)th iteration. Iterations are repeated as long as the error is bigger than the assumed value. 

The model is validated by the comparison of frequency characteristics measured on a 

structure with model frequency characteristics obtained by synthesis. If the consistence 
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condition is not met the preliminary poles estimation has to be repeated. Results visualisation 

stands for the last step of the analysis. 

3.1 Accuracy of the nonlinear least squares frequency domain 

 
The LSFD method is an ‘interactive’ method that requires careful analysis of the 

obtained solutions and, in case of appearance of significant approximation errors or lack of 

convergence, correction of problem formulation. Below there are presented schemes of 

proceeding, which usually enable the analyst to improve the quality of estimated solutions. To 

illustrate the theoretical considerations the characteristics of example data from the SDT user 

guide [Balmès E., 1997] are quoted.   

Measured amplitudes of frequency characteristics corresponding to the low frequency 

band are usually burden with errors resulting form signal processing or low sensitivity of 

piezoelectric sensors in this band. 

 

 
 
 
 
 
 
 
 
 
Fig. 2. The influence of taking into account a low frequency band on the LSFD accuracy. The results 
of analysis: −⋅−⋅ : including a low frequency band, −−− : excluding a low frequency band, 
  : measured characteristic. 
 
In the Fig. 2. there are shown characteristics estimated by the use of the LSFD method 

including a low frequency band ( −⋅−⋅  line) and excluding this band ( −−−  line). In case of 

excluding a low frequency band data from the analysis, the estimated characteristic is  fitted 

to the measured data accurately. Including a low frequency band data results in significant 

estimation errors. 

The LSFD method is used for analysis in a chosen frequency band. Correct results are 

obtained only in case of introducing upper (URij) and lower (LRij) residual terms that 

approximate the contribution of modes lying above and below the measurement frequency 

band. 
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Fig. 3. The influence of introducing UR and LR coefficients on the LSFD accuracy. The results of 
analysis: LL : including UR and LR coefficients, −−− : excluding UR and LR coefficients, 
   : measured  characteristic. 
 
The Fig. 3 illustrates the influence of introducing (or not) URij and LRij coefficients on the 

estimated solution quality. While taking into account this coefficients ( LL  characteristics), 

the estimated characteristic is fitted accurately to the measured data. Otherwise, the estimated 

solution ( −−−  characteristic) differs from the correct one. 

 Frequently, excluding the first resonance from the analyzed frequency band improves 

the quality of estimated solutions (Fig. 4). 
 ̀ 
 

 

 

 

 

 
 
Fig. 4. The influence of taking into account the first resonance in the given frequency band on the 
LSFD accuracy. Results of analysis:1(  ): with the first ‘pick’, 2 ( - - ): without the first ‘pick’, 
3 (  ): measured characteristic. 
 
Such a phenomenon appears in case of characteristic burden with numerical errors of data 

processing at the band boundary.   

3.2 The application of the LSFD method to estimation of the modal model of the real 

mechanical system  

The nonlinear least squares frequency domain method LSFD with the use of the Gauss 

– Newton algorithm was implemented in the Matlab [Mrozek B., Mrozek Z., 1998] 

computational environment. In order to verify the created software, the analysis of a real 

structure – steel frame (Fig. 4) - was carried out. In the paper the results obtained for three 

points of the structure of interest are presented. Frequency response functions of the estimated 
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models, obtained by means of synthesis, and frequency response functions measured on the 

real structure are shown in the Fig. 6, Fig. 8, Fig. 10. The comparison of poles estimated by 

the use of the proposed software and the classical LSCE (Least Squares Complex 

Exponential) method implemented in the VIOMA toolbox [Uhl T., et al., 2000] is presented 

in the Table 1, Table 2 and Table 3. There are also shown the parameters of modal models 

obtained after 40 iterations of the proposed software.  

The structure of interest was excited by the impulse force applied to the point 6 of the 

right bearing (Fig. 5, ‘component right’) in direction opposite to the x axis of the assumed 

coordinate system. 

 
 
 
 
 
 
 
 
 

 
 
 

Fig.  5. Scheme of the structure of interest 
 
A scheme of the test stand is shown in the Fig. 6 [Kurowski P., 2001].  

 

 
 
 
 
 
 
 
 
 

Fig. 6.  Scheme of the test stand 
 
The SigLab measurement analyzer (DSP Technology, model 2042) was used for registration 

of vibration accelerations in consecutive nodes as well as for estimation of spectral transfer  

functions necessary to perform modal analysis. System responses were measured with the use 

of piezoelectric accelerometers (PCB Piezotronics, USA) in each point in three directions.  

For the frequency response function measured in the Y direction at the point 9 of the 

left bearing (left:9:Y), by the use of the LSFD method, the modal model was estimated. The 

model frequency response function is presented in the Fig. 7.   
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Fig. 7. Frequency response functions:  : estimated by the use of the LSFD method, - - -:measured in 
the Y direction at the point 9 of the left bearing (upper diagram) and the relative error (lower  
diagram). 

 

Poles estimated by the use of the LSFD and classical LSCE methods are presented in the 

Table 1. There are also shown the parameters of the model fitted to the measured 

characteristic by the use of the LSFD method. 
 

LSCE LSFD left:9:Y 
f [Hz] ζ [%] f [Hz] ζ [%] parameter value 

pole I 12,884 1,12 12,884 0,86 R1 - 0,663 - 2,431i 
pole II 34,884 0,39 34,884 0,39 R2 0,596 + 3,016i 
pole III 50,769 0,36 50,769 0,24 R3 3,842 - 3,421i 
pole IV 81,690 0,92 81,690 0,52 R4 1,567 - 0,095i 
pole V 158,982 0,64 158,982 0,54 R5 - 0,136 - 0,090i 
sum of square errors: S = 58,15 
upper residual term UR: - 0,053 + 0,011i
lower residual term LR: - 2,750 + 1,095i

 
Table 1. Poles estimated by the use of the LSFD and LSCE method. Parameters of the model fitted by 
the use of the LSFD method to the frequency response function measured at the left:9:Y point. 
 
In the Fig. 8 there are presented the stabilizing diagrams determined by the use of the classical 

LSCE and LSFD methods. 
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Fig. 8. Stabilizing diagrams estimated by the use of the LSCE and LSFD methods for the frequency 
response function measured at the point left:9:Y. 
  

In the Fig. 9 there is presented a frequency response function of a modal model 

estimated by the use of the LSFD method for the data measured in the X direction at the point 

4 of the steel frame horizontal beam (point top:4:X). 

 

 
 
 
 
 
 

 
 
 

 
 
 
Fig. 9. Frequency response functions:  : estimated by the use of the LSFD method, - - -: measured at 
the point top:4:X (upper diagram) and the relative error( lower  diagram). 
 
Values of poles estimated by the use of the LSFD and LSCE methods as well as the other 

parameters of the model obtained after 40 iterations of the LSFD method for the considered 

characteristic are gathered in the Table 2. 
 

LSCE LSFD top:4:X 
f [Hz] ζ [%] f [Hz] ζ [%] parameter value 

pole I 12,879 0,83 12,879 0,83 R1 -0,274 + 0,066i 
pole II 50,188 0,62 - - - - 
pole III 81,133 0,98 81,133 0,95 R2 2,153 – 50,652i 
pole IV 127,686 1,75 127,686 0,60 R3 - 1,263 + 8,363i 
pole V 157,101 0,58 - - - - 
sum of square errors: S = 113,90
upper residual term UR: - 0,138 + 0,088i
lower residual term LR: - 4,290 – 1,203i

 
Table 2. Poles estimated by the use of the LSFD and LSCE method. Parameters of the model fitted by 
the use of the LSFD method to the frequency response function measured at the top:4:X  point. 
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In the Fig. 10 there are presented the stabilizing diagrams obtained by the use of the LSCE 

and LSFD methods for the data measured at the point top:4:X. 

 

 

 

 

 

 

 

 
Fig. 10. Stabilizing diagrams estimated by the use of the LSCE and LSFD methods for the data 
measured at the point top:4:X. 
 

For a frequency response function measured in the –Z direction at the point 4 of the 

steel frame right bearing (point right:4:-Z), by the use of the LSFD method, a modal model of 

a frequency response function shown in the Fig. 11 was obtained. 

  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Frequency response functions:   : estimated by the use of the LSFD method, - - -: measured 
at the point right:4: –Z of the steel frame (upper diagram) and the relative error (lower  diagram). 

 
In the Table 3 there are gathered the values of poles estimated for a considered characteristic 

by the use of the LSFD and LSCE methods as well as the parameters of the model frequency 

response function estimated by the use of the LSFD method.  
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LSCE LSFD right:4:-Z 
f [Hz] ζ [%] f [Hz] ζ [%] parameter value 

pole I 12,889 1,28 12,889 0,91 R1 0,470 + 5,212i 
pole II 50,579 0,60 50,579 0,69 R2 3,129 + 25,119i 
pole III - - 81,388 0,98 R3 - 0,241 -  0,671i 
pole IV 127,579 1,64 - - - - 
sum of square errors: S = 14,83 
upper residual term UR: - 0,144 + 0,027i 
lower residual term LR: - 3,586 + 1,074i 

 
Table 3. Poles estimated by the use of the LSFD and LSCE method. Parameters of the model fitted by 
the use of the LSFD method to the frequency response function measured at the point right:4:-Z. 

 

In the Fig. 12 there are presented the stabilizing diagrams for the data measured at the 

point right:9:Y. 

 

 

 

 

 

 

 

Fig. 22. Stabilizing diagrams estimated by the use of the LSCE and LSFD methods for the data 
measured at the point rigth:4:-Z. 
 
 The performed research revealed that the results obtained by the use of the LSFD 

method are burden with errors mainly for resonant areas lying in a high frequency band. 

 Stabilizing diagrams estimated by the use of the LSFD method are easier to interpret 

than those obtained by the use of the LSCE method: estimated pole lines are straight, not 

‘branched off’, which simplifies the choice of system poles. 

4 Conclusions and final remarks 
 
 In the paper there are presented the issues concerning the nonlinear least squares 

method as well as the Gauss – Newton and the Levenberg – Marquardt algorithms that 

provide numerical solution for this method. The authors proposed the application of the 

nonlinear least squares frequency domain method (LSFD) with the use of the Gauss – Newton 

algorithm to make the choice of correct poles values from the stabilizing diagrams more 

obvious for the analyst, which is considered as a critical stage of modern modal analysis. 

LSCE: right:4:- LSFD: right:4:-
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Such a usage of the considered method can lead to the quality improvement of the obtained 

modal models.  

 The created software was verified for the frequency response functions measured on the 

steel frame. In order to shorten the estimation time and to assure the method convergence as 

the poles initial values the poles estimated preliminarily by the use of the classical LSCE 

method implemented in the VIOMA toolbox were assumed. Since all the poles are updated 

simultaneously, the number of necessary iterations rarely exceeds 40 to 50 iterations. For the 

considered structure the problem of ill-conditioned matrixes did not appear. 
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