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ABSTRACT

In this paper we numerically study simple two dimensional frame structure loaded by
impulse-like excitations. Various configurations of time duration of a single impact load
and location of this excitation are investigated. The aim of this research is to indicate
the best possible load case for identification of a specific damage. Two kinds of struc-
tural modifications are considered. The first group concerns the element stiffness changes
(axial and bending) which can be simulated by alternating the Young‘s modulus. The
second group covers the modifications of stiffness nodal connections. In a numerical
model, these kinds of defects can be implemented using rotational spring with different
characteristics. Obtained selected responses for the original and modified structure are
numerically generated.

KEYWORDS : structural modification, semi-rigid joint, virtual distortion method,
gradient-based optimization.

INTRODUCTION

The damage identification problem is formulated as an optimization task exploiting the responses
computed for the original and modified structure. The structural modifications are modeled using the
Virtual Distortion Method (VDM) efficiently combined with the Finite Element Method (FEM). A
modification of a finite element is modeled by imposing an initial deformation on that element – the
so-called virtual distortion. The pre-stressed state of the structure is obtained by imposing an initial
deformation on that element, without external loading. The formula for updated responses is a super-
position of the original (with external load only) and pre-stressed state. The VDM technique allows
for analytical gradient computation which can be successfully used in the gradient-based optimization
problems.

The VDM technique is a versatile, fast reanalysis tool [1]. It has been used for identification
of stiffness or mass modifications in trusses and frames when subjected to dynamic [2] or harmonic
[3, 4] excitations. The application of this method is also suitable for various types of engineering
analyses including optimal remodeling [5, 6], progressive collapse [7], adaptive impact absorption
[8,9], detection of leakages in water distribution networks [10], detection of delamination in composite
structures [11], identification of defects in electrical circuits [12].

1. DESIGN VARIABLES AND OPTIMIZATION PROCEDURE

In this paper we deal with Euler-Bernoulli beam structures under a determined load. Structural mod-
ifications (the design variables) to be identified at first are parametrized using the so-called virtual
distortions and next optimized utilizing the selected dynamic responses obtained for the original and
modified structure. Two types of modifications are considered. The first of them concerns the stiffness
connection of an element with a node (semi-rigid joint) whereas the second is based on the modifica-
tion of an element stiffness (longitudinal and bending).
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1.1 Parametrization of the semi-rigid joints

A semi-rigid nodal connection of a beam can be modelled by a linear rotational spring. The torsional
moment Mα acting on the spring is equal to the bending moment at the adjacent end of the beam and
generates the angle of rotation

0
ϕα in the spring and in the beam. Thus, the constitutive law of the

spring can be expressed in terms of the nodal curvature κα and the angle of rotation
0

ϕα . For two
characteristics a. and b. presented in Figure 1(a), the above mentioned relations can be written in the
following forms:

κα =
0

ϕα tanψα =
0

ϕα sα for 0≤µα ≤
1
2

and ψα =
π

2
µ

n
α , (1)

0
ϕα = κα tanΘα = κα pα for

1
2
<µα ≤ 1 and Θα =

π

2
(1−µ

n
α) , (2)

where sα = tanψα is the rotational stiffness (cf. Figure 1(b)) and pα = tanθα is the rotational com-
pliance (cf. Figure 1(c)) of the spring. The dimensionless nodal stiffness parameter µn

α ∈ 〈0,1〉 can
be expressed by ψα or θα , which are valid in the range

〈
0, π

2

〉
. However, for avoiding singularities

during computations limitations are assumed for ψ ∈
〈
0, π

4

〉
and for θ ∈
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0, π

4

)
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κα

0
ϕα

π
4

a.

b.

ψα

θα

(a)

0 π
2

π
4

1

0 1
2 1

sα

ψα

µn
α

a.

(b)

0 π
2

π
4

1

0 1
2 1

pα

θα

µn
α

b.

(c)

Figure 1 : (a) Curvature-angle of rotation characteristics for a linear rotational spring. (b) Graph of the con-
nection stiffness as a function of parameter µn

α . (c) Graph of the connection compliance as a function of
parameter µn

α .

(2) the angle of rotation
0

ϕα is named the angular virtual distortion and is equivalent to the curvature
virtual distortion by the relation

0
κα = 4

lα
0

ϕα at modelled connection of the beam with the length lα .

The updated nodal curvatures κα of the structure with the imposed curvature virtual distortions
0
κα can

be expressed using the VDM technique as follows:

κα(t) =
L
κα(t)+

t

∑
τ=0

Bαβ (t− τ)
0
κβ (τ)−

0
κα(t), (3)

where
L
κα are the nodal curvatures of the original structure and Bαβ (t) is the time-dependent curvature

influence matrix containing nodal curvatures obtained by imposing the unit curvature virtual distor-
tions (i.e.

0
κα = 1) at modelled nodal connections of the structure. Substitution of Equation (3) into

Equations (1) and (2) leads to the relationship for determining the virtual distortions
0
κα for given

stiffness modification parameter µn
α . The resulting equation has to be solved for each time step t.
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Analogously to the Equation (3), arbitrarily selected structural responses (e.g. nodal displacements,
accelerations) can be updated knowing the curvature virtual distortions

0
κα using the following for-

mula:

f n
i (t) =

L
f n
i (t)+

t

∑
τ=0

B̂iα(t− τ)
0
κα(τ), (4)

where
L
fi(t) is the response of the intact structure and B̂iα(t) is the generalised influence matrix con-

taining selected responses computed for the unit virtual distortions. More detailed description for
modelling of the semi-rigid joints can be found in [13].

1.2 Parametrization of the stiffness of beams

Let us define the vector of element stiffness modifications µe
α =

k̂α

kα
, where kα and k̂α are stiffness

parameters of an intact and modified structure. In order to simplify, we assume modification of the
Young’s modulus, which leads to µe

α =
Êα

Eα
. The modifications can be modelled by the strain vir-

tual distortions
0
εα imposed on the elements of the original structure. We postulate that the structure

modelled by the virtual distortions and the modified structure are identical in the sense of generalized
strains and stresses at each time step t, which leads to the relationship:

µ
e
α εα(t) = εα(t)−

0
εα(t), (5)

where εα is a strain component for the beam element. Two dimensional beam element has three basic
strain components and Equation (5) has to be fulfilled for each of them (see [3]). Analogously, there
are three components of the virtual distortions

0
εα corresponding to the strain components εα . On the

other hand, the updated strain εα(t) can be computed using the VDM-technique:

εα(t) =
L
εα(t)+

t

∑
τ=0

Dαβ (t− τ)
0
εβ (τ), (6)

where Dαβ (t) is the strain influence matrix, whose columns contain strain obtained by consecutively
imposing the unit strain virtual distortions

0
εα(0) = 1 on the modelled elements at the first time step of

computations. By solving the set of Equations (5) and (6), the virtual distortions
0
εα(t) are determined.

Analogously to the Equation (4), the virtual distortions
0
εα(t) can be used for updating the generalized

response:

f e
i (t) =

L
f e
i (t)+

t

∑
τ=0

D̂iα(t− τ)
0
εα(τ), (7)

where D̂αβ (t) is the pre-computed generalized influence matrix whose columns contain the general-
ized response calculated for the unit strain virtual distortions imposed on the modelled elements.

The in-depth discussion for modelling of the stiffness parameters for the beam element (longitu-
dinal and bending) including cross-section area and formulation in the frequency domain is presented
in [14].

1.3 Optimization procedure

The identification of the design parameter µα (i.e. µn
α or µe

α ) can be formulated as a gradient-based
optimization problem utilizing responses obtained for the original and the modified structure. At
each iteration virtual distortions (

0
κα or

0
εα ) are determined which allow for efficient updating the
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modelled response fi(µα , t). The applied optimization procedure leads to matching the modelled
response fi(µα , t) to the response f M

i (µα , t) obtained for the modified structure as closely as possible.
The following objective function is proposed:

F(µα) = ∑
i

∑
t

(
fi(µα , t)− f M

i (t)
)2

∑
t

(
f M
i (t)

)2 . (8)

The vector µα can be iteratively determined using e.g. the steepest descent method (SD):

µ
k+1
α = µ

k
α −∆Fk F,α

||F,α ||2
, (9)

where the upper superscript k+ 1 denotes current iteration and k denotes previous iteration. The pa-
rameter ∆ is a constant from the interval of (0.1,0.3) or can be iteratively determined (sub-optimization
task) for each iteration k using the line search method (SD-LS). In Equation (9) Fk denotes the value
of the objective function in the k-th iteration, whereas F,α is the gradient of the objective function.
This gradient can be computed using the following relation:

F,α =
∂F
∂ µα

=
∂F
∂ fi

∂ fi

∂
0
κγ

∂
0
κγ

∂ µα

or F,α =
∂F
∂ µα

=
∂F
∂ fi

∂ fi

∂
0
εγ

∂
0
εγ

∂ µα

. (10)

The termination of the optimization process follows when decrease of the objective function reaches
either the pre-determined level (e.g 10−5) or the number of iterations.

2. NUMERICAL EXAMPLES

The numerical tests were preformed using the two-dimensional frame structure shown in Figure 2(a).
All its steel elements with length of 51cm have rectangular-shaped cross sections: 80 mm×8 mm,

density ρ = 7850 kg
m3 and Young’s modulus E = 210 GPa. Two load scenarios were considered: the

bending moment was applied either to node 5 or node 7 with the Gauss-like function series in the time
domain as presented in Figure 2(b).
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Figure 2 : (a) The scheme of the tested frame structure. (b) The load test functions applied either to node 5 or 7.

The components of the nodal modification vector µn
α (α = 1,2..8) are marked in Figure 2(a).

According to the notation, µn
1 denotes the dimensionless value of the nodal stiffness connection for

element 3 in node 4. All these components are unit at first step in the optimization procedure and are
limited to be in the range 〈0,1〉 in next iterations. The vector of the element stiffness modification µe

α

has also 8 components which are numbered as shown in Figure 2(a).
At first, the dynamic analysis of the original structure was performed using the Newmark’s in-

tegration method with the number of n = 501 time steps (∆t = 4 · 10−4 s). The accelerations at node
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8 along the x and y axis were selected as the structural response for defining the objective function
(cf. Equation (8)). For determining the virtual distortions the corresponding influence matrices Bαβ (t)
(dimensions: 8×8×501), Dαβ (t) (24×24×501) and for updating the accelerations the generalized
influence matrices B̂αβ (t) (2×8×501), D̂αβ (t) (2×24×501) were pre-computed.

2.1 Modification of the nodal stiffness connections

For the assumed modifications µn
3 = 0.5 and µn

4 = 0.5 at nodes 4 and 6 respectively, the accelerations
at node 8 were computed for the two load scenarios: at node 5 (scenario I) and at node 7 (scenario II).
For each load scenario, four test time-functions as illustrated in Figure 2(b) were applied. Altogether,
there were 8 optimisation problems to be solved. The solutions were obtained using the steepest de-
scent method (SD) twice: with and without line-search. The optimization results obtained for the load
scenario I are presented in Figure 3(a). In the logarithmically scaled vertical axis, normalized values
of the objective function during iterations are shown. The current value is referred to the value com-
puted at the first iteration. In Figure 3(c) the identified nodal stiffness parameters µn

α are illustrated.
Generally, the obtained solution is not precisely, however correctly indicates the localization of nodal
modifications (except for the test function T2). On the contrary, for the load scenario II the localization
of the nodal modifications were not indicated satisfactorily.

0 400 800 1200 1600 200010−4

10−3

10−2

10−1

100

no. iteration

F
i

F
1

T1
T2
T3
T4

(a)

0 400 800 1200 1600 200010−4

10−3

10−2

10−1

100

no. iteration

F
i

F
1

T1
T2
T3
T4

(b)

1 2 3 4 5 6 7 8
0

0.5

1

α

µ
n α

true modification T1 T2 T3 T4

(c)

1 2 3 4 5 6 7 8
0

0.5

1

α

µ
n α

true modification T1 T2 T3 T4

(d)

Figure 3 : Optimization results obtained for the load scenario I (node 5): (a) decreasing of the objective function
using SD method and (b) SD-LS method, (c) the identified the nodal stiffness parameters using SD method and
(d) SD-LS method.

The computations were repeated using an additional structural response – accelerations along y in
node 6. For this case the normalized values of the objective functions and the identified parameters µn

α

are presented in Figure 3(b) and Figure 3(d), respectively. From those charts one can see increase of
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the precision of the solutions. For assessment of the solution accuracy let us define an error function e:

e = ∑
α

|µ̂α − µ̄α |, (11)

where µ̂α the real modification parameter and µ̄α identified one. A set of the values e for the consid-
ered optimization problems contains Table 1.

2.2 Modification of the stiffness of elements

Similarly to the previous subsection, for the stiffness modifications (Young’s modulus) two elements
were selected: element no. 4 (with µe

3 = 0.5) and element no. 9 (with µe
6 = 0.5). The dynamic

responses (assumed two sensors) were recalculated for modified structure using the discussed testing
loads. Analogously to the previous optimization tasks, the solutions were computed using SD and
SD-LS methods using 500 and 125 iterations, respectively. The results obtained using SD method for
the load scenarios I and II are shown in Figure 4.
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Figure 4 : Optimization results obtained for the load scenario I (node 5): (a) decreasing of the objective function
using SD method and (b) SD-LS method, (c) the identified the element stiffness parameters using SD method
and (d) SD-LS method.

In case of identification of element stiffness parameters µe
α , the required number of iterations

is significantly less. Simultaneously, the resulting solution is very close to the real modifications,
especially for load scenario I (cf. Table 1).

In Figure 5 the computed acceleration in node 8 for the load scenario I (T1) is shown. The red line
corresponds to the original structure, whereas the blue and green ones are obtained for the structural
modification parameters µ̂n

α and µ̂e
α , respectively. All the responses are clearly different. During the

optimization process, the modification parameters µ̄n
α were identified such that the modelled response

(dashed black curve) covers the response of the modified structure.
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Figure 5 : A comparison of the acceleration obtained in node 8 along y axis under the load scenario I with the
test function T1.

3. SUMMARY

Table 1 contains the values of the error function according to Equation (11) computed for the all dis-
cussed optimized stiffness parameters. Generally, the smaller values are obtained for the impulses with
shorter time duration, but on the other hand it does not guarantee the rapid convergence of solutions.
The resulting values e calculated for the nodal stiffness parameters are higher than for the element
stiffness parameters, however the obtained modelled responses reflect the responses of the modified
structure very precisely (cf. Figure 5).

Table 1 : Values of the error function computed using Equation (11) and the identified stiffness parameters.

Value of the error function
Load

scenario
Identification of the nodal connections Identification of the stiffness of elements

SD SD-LS SD* SD-LS* SD SD-LS
I (T1) 0.12 0.69 0.11 0.15 4.3 ·10−5 1.2 ·10−2

I (T2) 1.04 0.77 0.31 0.60 1.7 ·10−4 1.1 ·10−3

I (T3) 0.40 0.76 0.63 0.87 4.7 ·10−4 2.1 ·10−3

I (T4) 0.57 0.84 0.80 0.71 1.4 ·10−5 1.1 ·10−3

II (T1) 1.62 1.43 1.37 1.31 < 1 ·10−6 3.2 ·10−4

II (T2) 0.11 0.68 0.12 0.64 2.2 ·10−2 1.33
II (T3) 1.21 0.83 1.10 0.87 0.22 0.79
II (T4) 1.56 1.50 0.52 1.11 8.8 ·10−3 6.5 ·10−2

∗computations performed with additional sensor

This study explores the modelling and identification of semi-rigid nodal connections and stiffness
of elements in 2D frame structures based on Bernoulli’s beam theory using finite element method
without modification of a local element stiffness matrix. Instead, for such modifications the virtual
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distortions field is imposed on the original structure. The basis for calculating of the updated dynamic
responses for the modified structure are the influence matrices. This approach allows for computation
of analytical gradients of the virtual distortions with respect to the vector of modification parameters.
Therefore, it is useful for solving the gradient-based optimization problems aimed at determination
of the parameters for the nodal semi-rigid connections. The objective function is expressed in terms
of responses obtained for the original and modified structure under the same load. In this paper,
a numerical example of identification of the nodal stiffness modification for the simple frame structure
was successfully performed.
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