

Smart Hybrid Semi-Active Dampers

Author:Grzegorz MikułowskiHome Organisation:IPPT PAN, Warsaw, PolandHost Organisation:CEDRAT Technologies, Meylan, FranceProject Title:Smart Technologies for Transport Safety - Innovation Cluster Nesting (Smart-Nest)Time frame:1.01.2012 - 31.12.2015Date:16.10.2015

"The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n° 284995".

Funded by the European Union

Outline

- Vibration control problems classification
- Current challenges in the vibration control systems
- Specific features of piezoelectric materials and applications to vibration control
- Hybrid approach and planned activities

Functional materials

- SMA shape memory alloys NiTiNol
- Magnetostrictive Terfenol
- Piezoelectric ceramics PZT
- MRF magnetorheological fluids
- Features awaited for vibration control:
- Reversity of the phenomenon
- Wide frequency response
- Efficiency of conversion

Vibration control systems based on functional materials – examples:

• Source mitigation – active system

- Bending reduction system based on piezoelectric actuator by Cedrat Tech.
- Vibration isolation -Semi-active hydro-mounts

Semi-active hydromount

• Vibration isolation - active system

• Active hydro mount

Adaptive demands for classical vibration control systems

Source mitigation

Isolation

Absorption

• **Demands:** adaptivity within a certain bandwidth (e.g. resistance to temperature variations)

Shunting techniques -modifiable mechanical properties of piezoelectric ceramics

Stiffness:

Capacitive shunt: a capacitive element in the shunt network will change the apparent stiffness of the piezoelectric element without affecting the damping properties of the structure.

Structural damping:

Resistive shunt: shunting a resistive element to the piezoelectric element means that some of the electrical energy is lost in the circuit through Joule heating. This virtually works as augmenting the structural damping

Shunting techniques - resonant circuit of piezoelectric ceramics

Resonant system:

Inductive shunt: since the piezoelectric element behaves electrically as a capacitor, shunting an inductive element will result in a resonant LC circuit.

$$\omega_e = \frac{1}{\sqrt{LC}}$$

Disadvantage: In the low frequency range the tuned electrical circuit needs a coil of inductance above 10 H, which requires a significant amount of volume.

Switch shunting techniques

Switched shunt: a switched network can change its characteristics rapidly based on the state of the mechanical system. This enables a control of the energy transfer.

Electro-mechanical conversion of switch shunted piezoelectric ceramics

State switched shunt responce:

Synchronised switched shunt responce:

Hybrid System for Vibration Control

Self power SSD system proposed by T. Delpero (2014)

Objectives:

- The objective for the hybrid systems development is to provide good performance in vibration level mitigation like with active systems, but with lower energy supply requirements.
 - The performance does not have to be as high as in the case of active systems but the energy consumption should be much lower.

Further research steps

Tests on a lab demonstrator -Switch shunt damping

Single mode case SSD - TMD

Multi mode case SSD - BEAM

Piezo SSD Accelerometer

Conclusions

- The objective of this investigation was to recognize the vibration control technique based on semi-active methods.
- A broad literature sources encourage to utilize the SSD technique as efficient in the vibration control task.
- A feasibility study of semi-active vibration control systems based on SSD and a synthetized electrical impedance was chosen for further development.