Active Damping of Suspension Bridges

A. Preumont, D. Alaluf, B. Mokrani

Université Libre de Bruxelles, Brussels, Belgium

AIA15 Warsaw October, 15th , 2015

Contents

- Motivation
- •Theory of decentralized IFF control of cable-structures
- Space structures (numerical simulation)
- Space structures (experiment)
- •Gamma ray telescope MAGIC
- Cable-stayed bridge
- Suspension bridge
- Conclusion

Cable-stayed bridge

Suspension bridge

Stay cables in suspension bridges

Motivation

Decentralized Collocated IFF control of cable structures

with the active cables $1 + g \frac{(s^2 + \omega_i^2)}{s(s^2 + \Omega_i^2)} = 0$ Ω_{i} Im(s) ξ_{i}^{\max} ω_{i} Re(s) active cables removed

natural frequency

Maximum achievable damping:

Recovering static stiffness: The "Beta" controller

IFF Controller:

$$h(s) = s^{-1}$$

Beta Controller:
$$gh(s) = \frac{gs}{(s+\beta)^2}$$

$$\lim_{s=0} [Ms^{2} + K + \frac{s}{s+q}BK_{c}B^{T}] = K$$

$$1 + g \frac{s^2 + \omega_i^2}{s(s^2 + \Omega_i^2)} = 0$$

$$\lim_{s=0} \left[Ms^2 + K + \frac{(s+\beta)^2}{qs + (s+\beta)^2} BK_c B^T \right] = K + BK_c B^T$$

$$1 + g \frac{s(s^2 + \omega_i^2)}{(s+\beta)^2(s^2 + \Omega_i^2)} = 0$$

JPL Microprecision Interferometer testbed (simulation)

ULB

ULB free floating truss

Fig. 15.13 ULB free floating truss test structure and detail of the active tendon.

ULB free floating truss

ULB free floating truss (Theory vs. Experiment)

MAGIC – Major Atmospheric Gamma-ray Imaging Cherenkov Telescope

Focal length:17 m

Mirror diameter: 17 m

Camera Mass: 0.75 t

Total Mass:72 t

Mirror support: CFR tubes

Camera Mast – Stiffened by

prestressed cables

M. SMRZ, et al. Active Damping of the Camera Support Mast of a Cherenkov Gamma Ray Telescope, *Nuclear Instruments and Methods in Physics Research*, A 635 (2011)

Magic Telescope

Suspension bridge

Suspension bridge: Seriate footbridge (45°40'18.5"N 9°43'45.2"E)

8 pedestrians walking on the bridge (measurement point 3)

Mode	2D Numerical	3D Numerical	Experimental	Numerical	Experimental
N.	(Hz)	(Hz)	(Hz)	Mode Shape	Mode Shape
1 st B.	1.03	1.02	$\xi_1 = 2.77 \%$		
2 nd B.	1.39	1.48	1.48 $\xi_2 = 1.34 \%$		
1^{st} T.	/	1.79	1.92		
2^{nd} T.	/	2.1	1.94		
3^{rd} B.	2.22	2.20	2.17 $\xi_3 = 1.48 \%$		
3^{rd} T.	/	2.65	2.75		
4^{th} B.	2.81	2.78	2.86 $\xi_4 = 1.50 \%$		

Table 1: Natural frequencies and mode shapes of the Seriate footbridge, comparison of the 3D model and 2D model with experiments [18]. The two critical modes are **3B** and **4B**.

Option 1: Four active steel cables of diameter 10 mm between the pylon and the deck

$$\xi_i^{max} = \frac{\Omega_i - \omega_i}{2\omega_i}$$

		Posit	Position A		Position B		Position C		Position D	
Mode	ω_i	Ω_i	ξ_i^{max}	Ω_i	ξ_i^{max}	Ω_i	ξ_i^{max}	Ω_i	ξ_i^{max}	
#	(Hz)	(Hz)	(%)	(Hz)	(%)	(Hz)	(%)	(Hz)	(%)	
1^{st} B	1.02	1.07	2.2	1.22	9.8	1.38	17.5	1.53	24.7	
2^{nd} B	1.48	1.49	0.6	1.54	2.1	1.55	2.5	1.53	1.8	
$1^{st} T$	1.79	1.81	0.6	1.91	3.3	2.04	6.9	2.12	9.0	
2^{nd} T	2.10	2.10	0.2	2.13	6.2	2.13	0.8	2.18	2.0	
$3^{rd} \; \mathrm{B}$	2.20	2.23	0.7	2.36	3.6	2.54	$\left(\frac{7.7}{}\right)$	2.64	10.0	
$3^{rd} T$	2.65	2.65	0.0	2.65	0.0	2.65		2.65	0.0	
$4^{th}~\mathrm{B}$	2.78	2.85	6.3	3.13	6.3	3.31	$\left(\underline{9.6}\right)$	3.17	(7.1)	
$4^{th} \mathrm{T}$	3.26	3.28	1.7	3.37	1.7	3.52	3.9	3.66	6.1	

Option 2: Active cables attached to the catenary

$$\xi_i^{max} = \frac{\Omega_i - \omega_i}{2\omega_i}$$

		Position A		Position B		Position C		Position D	
Mode	ω_i	Ω_i	ξ_i^{max}	Ω_i	ξ_i^{max}	Ω_i	ξ_i^{max}	Ω_i	ξ_i^{max}
#	(Hz)	(Hz)	(%)	(Hz)	(%)	(Hz)	(%)	(Hz)	(%)
1^{st} B	1.02	1.06	1.6	1.21	9.4	1.40	18.5	1.58	27.2
2^{nd} B	1.48	1.50	0.6	1.56	2.9	1.59	4	1.58	3.4
$1^{st} T$	1.79	1.81	0.5	1.93	3.7	2.12	9.1	2.36	15.7
2^{nd} T	2.10	2.11	0.3	2.16	1.5	2.18	1.9	2.16	1.5
$3^{rd} \; \mathrm{B}$	2.20	2.21	0.3	2.30	2.4	2.42	5.1	2.90	(15.9)
$3^{rd} T$	2.65	2.65	0.0	2.66	0.0	2.66	0.1	2.66	0.1
$4^{th} \; \mathrm{B}$	2.78	2.83	1.0	3.09	5.7	3.63	15.4	3.59	(14.7)
$4^{th} \mathrm{\ T}$	3.26	3.27	0.1	3.35	1.3	3.54	4.3	3.81	8.3

MSc students Andrea Sangiovanni and Matteo Voltan, from Politecnico di Milano (2015)

Schematic view of the laboratory mock-up

The tension in the hanger is adjusted from the measured natural frequency:

$$f = \frac{1}{2L} \sqrt{\frac{T_0}{\varrho A}}$$

Mock-up with 4 active tendons

Laboratory demonstrator: comparison between numerical and experimental modes

Mode N.	Numerical (Hz)	Experimental (Hz)	Numerical Mode Shape	Experimental Mode Shape
1 st B.	4.84	4.81		
2 nd B.	7.68	5.59		
3 rd B.	11.33	10.82		
4 th B.	17.93	18.25		
3^{rd} T.	19.12	21.75		
5 th B.	28.01	28.84		

Open-loop Transfer Function

Response to disturbance, z/f with a single loop of control

Response with a single control loop: Evolution of the RMS response (z) and the RMS control input (v) with the control gain g

Response with a single control loop: Root locus reconstruction and comparison with the approximate theory

Decentralized control with Four independent loops Reponse to disturbance z/f (FRF and cumulative RMS)

Conclusions

- Decentralized active tendon control of cable-structures is possible.
- Simple prediction formulae based on linear models may be used for design.
- The simple performance prediction formulae are supported by experiments.
- The static stiffness deficiency of the IFF can be recovered by high –pass filtering.
- A highly effective control of a **suspension bridge** may be obtained with few and small active control cables which do not have to withstand the dead loads.

Acknowledgements

Prof. **Carmelo Gentile** from Politecnico di Milano (Italy) for sharing with us the data and the experimental modal analysis of the Seriate Bridge.

Prof. **Mihaita Horodinca** from « Gheorghe Asachi » university of IASI (Romania) for his help in the construction of the bridge laboratory mock-up.

MSc students **Andrea Sangiovanni** and **Matteo Voltan**, from Politecnico di Milano for conducting the experimental study of the bridge mock-up.